On the intersection of a set of direction cones
نویسنده
چکیده
A new method is suggested to compute the intersection of a set of direction cones encountered in the problem of passing a convex polyhedron through a window. The time requirement of this method is 0( nm), where n is the number of vertices of the polyhedron and m is the number of vertices of the window. Besides this time improvement, the concept of parallel congruence, which the new method is crucially based on, is discussed. 6 1989 Academic
منابع مشابه
On the Security of O-PSI a Delegated Private Set Intersection on Outsourced Datasets (Extended Version)
In recent years, determining the common information privately and efficiently between two mutually mistrusting parties have become an important issue in social networks. Many Private set intersection (PSI) protocols have been introduced to address this issue. By applying these protocols, two parties can compute the intersection between their sets without disclosing any information about compone...
متن کاملSOME RESULTS ON THE COMPLEMENT OF THE INTERSECTION GRAPH OF SUBGROUPS OF A FINITE GROUP
Let G be a group. Recall that the intersection graph of subgroups of G is an undirected graph whose vertex set is the set of all nontrivial subgroups of G and distinct vertices H,K are joined by an edge in this graph if and only if the intersection of H and K is nontrivial. The aim of this article is to investigate the interplay between the group-theoretic properties of a finite group G and the...
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision, Graphics, and Image Processing
دوره 45 شماره
صفحات -
تاریخ انتشار 1989